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Review Article 
Liquid Structure a t  the Melting Temperature Related to 
Surface Energy and to Vacancy Formation Energy in the 
Hot Crystal 

N. H. MARCH 

Theoretical Chemistry Department, University of Oxford, I South Parks Road. 
Oxford OX1 3TG England 

(Received September 1 7,1984) 

A review is first given of the theoretical basis for the relation, valid near the triple point, 

uK, = 1 

where o is the liquid surface energy, K ,  is the bulk isothermal compressibility while I measures 
the thickness of the liquid-vapour interface. 

Attention is then focussed on  the work of Alonso and March in which, for liquid metals, 
it is shown that I = U { S , _ ( O ) / ~ , T , } ” ~  where S,_(O) is the long wavelength limit of the bulk 
liquid structure a t  the melting temperature T,,, while c( is a constant so far determined only 
empirically. 

A modified free electron argument is then given to relate surface energy to vacancy forma- 
tion energy, for simple metals like the alkalis. Again, the argument does not take account of 
ionic structure. Finally therefore, a pair potential theory of the vacancy formation energy, 
worked out in argon to avoid the complication of density dependent pair potentials in metals, 
is shown to relate vacancy formation energy E , ,  now in the hot solid, to bulk liquid structure 
a t  the melting point. 

1 INTRODUCTION 

Empirical correlations between the vacancy formation energy E,, melting 
temperature T, and isothermal compressibility K ,  have been known for 
a long time. Such correlations are useful, but are not to be expected, from 
the data, to have an exact basis. In this paper, we shall summarize arguments, 
usually based on rather simple models that can be developed analytically, 
that throw light on the above correlations, plus further correlations involving 
liquid surface energy CJ at T,. 
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2 N. H. MARCH 

The outline of the review is as follows. In section 2 below, we summarize 
a simple density functional calculation’ of the surface energy of a liquid 
metal. This leads to the result 

OK, = constant I ,  (1.1) 

where 2 measures the thickness of the liquid-vapour interface, while the 
constant is a pure number of order unity. Equation (1.1) was already known 
to Frenkel’ to express a strong empirical correlation between surface 
energy and bulk compressibility for liquids near the triple point, and the 
relation was rediscovered by Egelstaff and W i d ~ r n . ~  

However, the density functional model used to derive (1.1) neglects 
ionic structure, which is probably justified only for Na and K, and thus 
the result 1 K p-’” (see section 2, below eqn (2.5)) where p is the electron 
chemical potential, cannot be expected to apply to a wide range of liquid 
metals. 

Therefore, following Alonso and the ~ r i t e r , ~  appeal is made to the semi- 
empirical arguments of Miedema et a15, which hitherto were applied princi- 
pally to correlate solid-state properties. These arguments lead then, when 
appropriately applied to liquids, to the conclusion that the width I of the 
liquid-vapour interface at the melting temperature T, involves the bulk 
liquid structure factor STm(0) in the long wavelength limit, which reflects, 
in turn, the marked short-range ionic ordering in the liquid. Thus, it will 
be demonstrated that 

1 = cI{ST,(0)/k,Trn}~’2 

where the constant LX, so far, is known from empirical considerations only. 
Then, in section 3, a nearly free electron argument, motivated by the re- 

markable similarity between numerically calculated electron density 
profiles through a solid A1 surface and round a vacancy in the same metal, 
is shown to correlate surface energy of simple s-p solid metals with vacancy 
formulation energy. This then leads naturally, following work of Bhatia 
and the writer,6 to a theory of vacancy formation energy E , ,  now in a hot 
crystal such as, say, argon near its melting point, based on a pair potential 
formulation due to Faber’: see also Minchin et a2.* This theory is shown to 
relate E,/k,Trn directly to bulk liquid structure. Section 4 constitutes a 
summary, plus some remarks on prospects for further work in the areas 
covered here. 
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STRUCTURE RELATED TO SURFACES AND VACANCIES 3 

2 SURFACE ENERGY OF LIQUID METALS AT THE MELTING 
TEMPERATURE RELATED TO BULK COMPRESSIBILITY A N D  
THICKNESS OF LIQUID-VAPOUR INTERFACE 

We shall summarize first a simple density functional calculation of the surface 
energy of a liquid metal, given by Brown and March.’ This is based on three, 
admittedly somewhat oversimplified, assumptions, but given these it has 
the merit that then the entire calculation of electron density profile and 
liquid surface energy can be carried through analytically. The assumptions 
are : 

i) That because ions and electrons both spill out from the liquid metal 
surface, electrical neutrality will make the electrostatic contribution to the 
potential energy I/ in the Schrodinger equation for the conduction electron 
wave functions through the liquid-vapour interface substantially smaller 
than it would be for a corresponding solid-state situation where the ionic 
density cuts off abruptly. 

ii) Because of (i), the electrons move, largely independently, in their own 
exchange potential, taken to be the usual Dirac-Slater p1I3 form’, p being 
the electron density through the interface. 

iii} The inhomogeneity in p through the surface can be usefully treated 
by adding to the bulk electron gas energy density function[al] ~ ( p )  a 
von-Weizsacker-Kirzhnits kinetic energy correction Ah2/8m (Vp)’/p dr. 

Thus, Brown and March’ write for the total energy of the liquid metal in 
the presence of the surface: 

E = [ ~ ( p )  + --I hi2 (Vp)2  dr. 
8m P 

They then employ the usual variation principle, 

N being the total number of electrons, with the Lagrange multiplier p having 
its usual significance as the chemical potential of the electronic. charge 
distribution. Putting $ = p1I2,  the Euler equation is found to be: 

z being measured perpendicular to the planar metal surface. 
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4 N. H. MARCH 

The surface energy, following Brown and March' is 

With the free electron choice E ( P )  = &kinetic + &,,change, these workers 
integrated Eq. (2.3) to find 

where po is the (constant) density deep in the bulk liquid metal, while B is a 
constant of order unity, chosen to ensure neutrality. 1 in Eq. (2.5) evidently 
measures the extent of the electron spill-out into the vapour, and using 
Eq. (2.5) in (2.4) Brown and March regain Eq. (1.1), with 1 K p- ' ' ' ,  as 
already mentioned above. 

Though this last result is too simple to work for, say, the s-p polyvalent 
liquid metals, or more obviously, d-electron metals, where the influence of 

TABLE I 
Data on surface tension. compressibility and structure at melting temperature T ,  (after Ref. 4) 

lT 

Metal (dyn cm- ' )  1 = uKTm ST,,,(0) dyn'" crn1l2 

Li 
Na 
K 
Rb 
c s  
Be 

Ca 
Sr 
Ba 
c u  
Ag 
Zn 
Cd 
Hg 
Al  
Ga 
In 
T1 
Sn 
Pb 
Sb 
Bi 
Fe 

Mg 

410 
200 
110 
85 
70 

(1350) 
570 
350 
295 
255 

1310 
910 
770 
590 
48 5 
865 
715 
560 
465 
570 
460 
390 
380 

1830 

( 1  1) 
18.6 
38.2 
49.3 
68.8 

(1.94) 
5.06 
11.0 
13.1 
17.8 
1.49 
2.11 
2.50 
3.24 
3.75 
2.42 
2.19 
2.95 
3.83 
2.71 
3.49 
4.90 
4.21 
1.43 

0.45 
0.37 
0.42 
0.42 
0.48 
0.26 
0.29 
0.38 
0.39 
0.45 
0.19 
0.19 
0.19 
0.19 
0.18 
0.21 
0.16 
0.17 
0.18 
0.15 
0.16 
0.19 
0.16 
0.26 

0.031 
0.023 
0.023 
0.022 
0.024 
0.047 
0.025 
0.035 
0.03 I 
0.036 
0.021 
0.019 
0.015 
0.011 
0.005 
0.017 
0.005 
0.007 
0.010 
0.007 
0.009 
0.019 
0.009 
0.027 

5.0 
4.3 
4.7 
4.6 
4.9 
4.3 
5.0 
6.2 
6.4 
6.9 
4.5 
4.5 
3.8 
4.0 
3.6 
4.5 
3.6 
3.9 
3.9 
3.9 
3.8 
3.8 
3.6 
6.2 
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STRUCTURE RELATED TO SURFACES AND VACANCIES 5 

ionic structure must be incorporated explicitly, the above density functional 
argument leads, naturally enough, to the relation (1.1), based originally on 
empirical correlations. 

Subsequent work of Alonso and March4 has therefore focussed all atten- 
tion on understanding the way the values of 1, found empirically from Eq. 
(1 .1)  by putting the constant equal to unity, vary though the entire range of 
liquid metals at the melting temperature T,. These values of 1 are collected 
in Table I, where 1 can be seen to vary by a factor between 2 and 3, whereas 
the separate variations in o and K T  over the range of liquid metals are an 
order of magnitude greater. 

2.1 Miedema's empirical correlations extended to liquid metals 
at the melting point 

Following Miedema and co-workers,' Alonso and March4 have demon- 
strated, using boundary density data nb as in the solid, and experimental 
values of liquid surface energy CJ at T, that 

CJ = constant nb 

is well obeyed in the liquid at Tm. Furthermore, these workers show that 
l / Z  

nb = const{&} 

where K , is the bulk liquid compressibility at T, while R is the atomic volume. 
Using finally the well-known result of fluctuation theory that the long- 
wavelength limit S(0) of the liquid structure factor S(k)  is related to K ,  by 

STm(0) = n i  kB Tm K T  3 (2.8) 

the melting temperature having been explicitly inserted in Eq. (2.8), Eqs (Ll), 
plus Eqs (2.6)-(2.Q readily yield Eq. (1.2). This formula nicely accounts 
for the variation of I found empirically and recorded in Table I through the 
entire range of liquid metals. 

3 VACANCY FORMATION ENERGY IN HOT CRYSTAL RELATED 
TO SURFACE ENERGY A N D  TO BULK LIQUID STRUCTURE 

Having established the basis for Eqs (1.1) and (1.2), let us return to the 
correlations referred to in the Introduction involving E, ,  T, and K , .  That 
E ,  and surface energy ought to be related was emphasized by the present 
writer," by comparison of the numerically calculated electron density 
profile of Kohn and Lang' ' 3  l 2  for the semi-infinite jellium model of a solid 
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6 N. H. MARCH 

A1 surface and that for a vacancy in A1 determined by Stott et al.I3 These 
are indistinguishable to graphical accuracy (see Figure of Ref. 10) and moti- 
vated the nearly free electron argument outlined below. First, one writes 
Eq. (2.8) in terms of ionic mass M and velocity of sounds V,,  to obtain 

where y = C,/C, is the ratio of the specific heats. 

valency Z ,  one finds, with E ,  = $mV; being the Fermi energy, 

and if this is combined with the Bohm-Staver formulaI4 for the velocity 

From a linear theory of the vacancy energy E ,  for a free electron metal of 

E ,  = &ZE, (3.2) 

of sound 

one obtains, po being the ionic density, 

2 Y  
5 Po& 

E ,  = -- 

Using Eq. (l.l), now with constant 3/4, this yields'O 

(3.3) 

(3.4) 

Since 1 and y, at the melting point, vary respectively by a factor between 
2 and 3, and a factor - 3 over the entire range of liquid metals at  the melting 
point, a strong correlation between E ,  and (T emerges according to Eq. (3.5); 
(r here referring to the solid. 

However, since (T just above the melting point is correlated with bulk 
structure, from the arguments of section 2, it is clearly implied that E ,  in 
the hot crystal near Tm should relate approximately to bulk liquid structure. 

3.1 

That this is indeed so has been demonstrated by Bhatia and March (1984) 
whose work, based on a pair potential approach, we shall therefore summar- 
ize below. That E,/kB T, for metals is a number - 10 emerges from the 
empirical correlations referred to in the Introduction. We shall see below 
that a number of this order can be definitely identified with well defined 
quantities obtainable from the bulk liquid structure factor S(k)  at the 
melting point. 

To avoid the not inconsiderable complications of density dependent pair 

Pair potential theory of EV in a hot, close-packed argon crystal 
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STRUCTURE RELATED TO SURFACES AND VACANCIES 7 

potentials appropriate to metals, we shall consider, following Bhatia and 
March,6 the case of solid argon near the melting temperature. In this close- 
packed crystal, it is a reasonable first approximation to neglect atomic 
relaxation round the vacant lattice site. Then Faber’ has given a formulation 
of pair potential theory in wave vector q space, in the language of liquid 
state theory. His formula for the vacancy formation energy has been expressed 
in r space by Minchin et al.’ and their formulation was the starting point 
of the work of Bhatia and March: discussed in some detail below. 

Minchin et al. give 

where g(r )  is the usual pair correlation function, 4 is the pair potential, n 
is the atomic number density, n = R-’  while p is the pressure. Since the 
local coordination changes but little on melting solid argon; we assume 
E ,  in the hot crystal can be evaluated from the liquid g(r) at melting. That 
the term involving a+/& makes only a small contribution to E ,  in Eq. (3.6) 
is clear if we invoke the virial equation of state, namely 

p = nk,T - - r - g(r) dr. :s :! (3.7) 

Putting p = 0 yields the second term on the right-hand-side of Eq. (3.6) 
as - k ,  T, and since E, % kB T’, the 1 g 4  dr is plainly the dominant term in 
determining E ,  from Eq. (3.6). 

Bhatia and March6 now invoke the Ornstein-Zernike direct correlation 
function c(r), related to the total correlation function h(r) = g(r) - 1 by 

h(r) = c(r) + n c(r - r‘)h(r’) dr‘ (3.8) s 
Next Woodhead-Galloway et al.” have approximated the liquid direct 

correlation function c(r) for argon by 

where (Plong-range(r) = 4(r) outside the hard core of diameter 0. Using the 
Percus-Yevick solution of Wertheim16 and Thiele” for Chard-sphere(r) and 
noting that this yields c = 0 outside r = 0, we can evidently write 

(3.10) 

In the term involving 1 g 4  dr in Eq. (3.6), g _N 0 for r < 0 and hence, putting 
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8 N. H. MARCH 

the term in i34/ar equal to - k ,  T, as argued above, we find 

E ,  A 2 [ n k B T { s g ( r ) c ( r )  dr - ')1 T=T, , (3.11) 

or 

(3.12) E" __ = 1 ( n J c ( r )  dr + n j h ( r ) c ( r )  dr - 2 
kBTm 

Defining the Fourier transform E ( q )  by 

E(q) = n c(r)  exp(iq . r) dr, s 
and using h(r = 0) = - 1, we obtain 

n h(r)c(r) dr = -[1 + c(r = O)] s 
which inserted into Eq. (3.12) yields 

(3.13) 

(3.14) 

(3.15) 

the principal result of the work of Bhatia and March.6 It clearly relates 
E J k B  T, to the bulk liquid structure factor at the melting temperature Tm. 

3.2 Estimates based on hard sphere approximation for direct 
correlation function 

Using the Percus-Yevick hard sphere solution to estimate c(r  = 0) in 
Eq. (3.15) one finds 

c(r = 0) N C;:(r = 0) = -(1 + 2?7)2/(1 - 4 4  (3.16) 

where y~ = (n/6)no3 is the packing fraction. For many simple liquids near 
Tm, q N 0.45 and Eq. (3.15) becomes, using E(0) = 1 - l/S(O), K T  = B-' 
with B the bulk modulus, and Eq. (2.8), 

E ,  1 BR -+---  - 20. 
kBTm kBTm 

(3.17) 

Invoking dimensional arguments of the type involved in deriving Linde- 
mann's melting law, BQ-  constant k ,  T, and it turns out that E J k ,  T, N 10 
for argon, for which Tm IE 85 K. While agreement with experiment is some- 
what better than semi-quantitative, the large number - 20 on the right-hand- 
side of Eq. (3.17) clearly has its origin in the large negative value of c(r = 0) 
in liquid argon at T,. 
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STRUCTURE RELATED TO SURFACES AND VACANCIES 9 

4 S U M M A R Y  AND PROSPECTS 

Insight is now possible into the basic origin of an empirical relation of type 
(1.1) between liquid values of surface energy and bulk compressibility at the 
melting temperature T,. Furthermore, the width I of the liquid-vapour 
interface at T, has been shown by Alonso and March4 to correlate with bulk 
liquid structure STm(0), and thermal energy k ,  T, through Eq. (1.2). The 
discussion in Ref. 4 outlines some basis for the Miedema correlations invoked 
to obtain Eq. (1.2), as well as possibilities for an eventual first principles 
calculation of the constant CI in this relation. Plainly, however, the direct 
correlation function in the presence of the surface will have to be decoupled 
in terms of the bulk direct correlation function and the density profile to 
permit such a calculation to be carried through. 

Further work, following up that of Minchin et a1.’ on the evaluation of E ,  
for metals will be fruitful, as will work on the relation between o and E ,  for 
d-electron metals. This will, no doubt, relate to the work of Lannoo and 
Allen,18 who correlate E ,  for transition metals to the occupancy of the 
d-band, and to the study of g in these metals in the liquid state by Cyrot- 
Lackmann,” who relates r~ again to the d-band occupancy. 
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